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Abstract  

Expressions for the Lie derivatives of functions of non-commuting variables are derived 
and used to reformulate classical mechanics. This is possiNe only if the phase space 
variables commute, or if they satisfy Heisenberg's commutation relations. 

1. Introduction 

The structural similarity between classical and quantum mechanics 
provides a useful approach to the study of the mathematical foundations 
of the two theories. This structural similarity is manifested most con- 
spicuously in the set of  dynamical variables: In both theories, the set of 
dynamical variables is a linear space equipped with two algebraic structures, 
an associative product, and a Lie product. In classical mechanics, the 
dynamical variables are represented by real-valued functions of  class C ~ 
over phase space; the associative product is the ordinary product of  such 
functions, which is also commutative, and the Lie product is the Poisson 
bracket. In the usual representation of quantum mechanics, the dynamical 
variables are operators in Hilbert space; the associative product is the 
composition of such operators, which is not commutative, and the Lie 
product is essentially the commutator.  

The natural starting point for the study of the structural relationship 
between classical and quantum mechanics is a fundamental uniqueness 
theorem due to Falk (1951), according to which exactly two associative 
algebras admit a Lie product satisfying the axioms of the Poisson bracket: 
The algebra of functions of commuting phase space variables, and the 
algebra o f  functions of  phase space variables which satisfy Heisenberg's 
commutation relations. 

The problem of introducing a Poisson structure into an associative 
algebra may be analysed from two points of view. On the one hand, one 
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can adopt a purely algebraic attitude, and view the Poisson product as an 
abstract, axiomatically defined operation. The problem consists in finding 
all associative algebras which admit such a product, and in exhibiting, in 
each of these algebras, an algorithm for this product. This problem has 
been solved elsewhere (Grgin & Petersen, 1972). The algebraic approach 
also yields a solution to the problem of representing canonical algebras in 
auxiliary algebras. On the other hand, one can adopt a geometric attitude, 
and interpret the Poisson product as a Lie derivative, The concept of the 
Lie derivative is the basic tool for the study of groups of motions which 
leave invariant some geometric object of interest. In differential geometry 
one considers, for example, the Killing motions, which preserve the metric 
tensor, the conformal motions, which preserve the metric tensor density, 
etc. 

In this paper we study the structural relation between classical and 
quantum mechanics from a point of view suggested by the differential 
geometric formulation of classical mechanics. For this purpose we first 
derive expressions for Lie derivatives of non-commuting scalars, contra- 
variant vectors and gradients, With the help of these expressions we 
reformulate classical canonical mechanics without assuming that the 
phase space variables commute. It then turns out that this is possible only 
if they commute, or if they satisfy the Heisenberg commutation relations. 

2. Canonical Structures 

Basic to the canonical description of classical mechanical systems of n 
degrees of freedom is a 2n-dimensional affine space, ~ ,  the phase space. 
One usually thinks of it as the direct sum of configuration and momentum 
spaces, and uses, accordingly, the symbols qt, Pl to label its points. This 
attitude unduly emphasizes the distinction between positions and momenta, 
a distinction not preserved by the canonical group. We shall denote by z ~, 
where e, t3 . . . .  t ..... 2n, the coordinates of the points of phase space. 

The observables of classical mechanics are represented by real-valued 
functions in phase space. They naturally form an associative and com- 
mutative algebra, d .  Thus, ~r is a linear space over the field of teat 
numbers, and is closed under multiplication of functions. 

The basic postulate of canonical mechanics introduces, in addition, a 
Lie structure into this algebra, namely the Poisson bracket. It is convenient 

+ - 4  4 - ~  

to define the Poisson product, V, by the identity fVg=_ {f, g}, where 

f, g ~ d .  Thus, V = O~ e~O~, where O~ D~=f O/OZ% and also f ~  De=f Oa f We 
use the summation convention over repeated indices of opposite variance. 
The symbols e ~/~ represent the components of the fundamental symplectie 
tensor of phase space in contravariant form. if one takes z ~ =Pt, z"+~ = q~, 
it reads 
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In general, it is an arbitrarily given, regular antisymmetric tensor. If its 
components are not constants, the Jacobi identity implies that its exterior 
derivative must vanish. 

The covariant form, %~, of the symplectic tensor is defined by the relation 

e~e el3e = 8~ (2.1) 

Indices are raised and lowered according to the rules: e~T~ = T " ,  
T ~ e,~ = T/3. The sign of the symplectic scalar product depends on the 
relative positions of the contracted indices, e.g. a~'b~ = - a z b  ~'. Thus, the 
Poisson product assumes the simple form: 

= 7 0 0~ = -0%0 0 (2.2) 

We next consider the canonical motions, i.e. the motions in phase space 
which preserve the canonical structure. Let hO(z) denote a vector field in ~a. 
It generates an infinitesimal motion 

z p -+ z '  + 8rhP(z) (2.3) 

which induces an infinitesimal motion in ag: 

f -+ f + 3rhO f o  (2.4) 

This motion evidently preserves the associative product in d .  The require- 

ment that it should also preserve the Lie product f V g  implies that the 
vector field h p is a field of gradients: 

h p = h "p -~ ePrh ,  r (2.5) 

where h(z) is any observable, h ~ z~'. It is a characteristic feature ofcanonicai 
theory, that the algebra of canonical observables coincides, pointwise, with 
the algebra of canonical generators. Relations (2.4), (2.5) and (2.2) imply: 

f -> f + 8r fVh  (2.6) 

Thus, the bilinear Poisson operator defines, with the observables, the 
infinitesimal generators of the Lie group of canonical motions. 

3. Non-commuting Variables 

We shall now develop the geometric theory of canonical mechanics 
outlined in Section 2 for the general case of non-commuting variables. 

From now on, ~r shall denote an associative, but possibly non- 
commutative algebra generated by 2n independent generators Z ~ over the 
field of complex numbers. The associative product in d shall be denoted by 
juxtaposition of elements, and the unit of the algebra by e. Thus, e f=fe  = f  
for every f e  ~e/. We shall use the same notations and terminology as in 
the case of classical mechanics. Thus, ~ shall denote the real linear space 
spanned by the elements Z ~, and we shall call it the phase space. The 



328 EMILE GRGIN AND AAGE PETERSEN 

e lements f  E d shall be cailedfunctions of the variables Z % For the purpose 
of  this paper, all calculations can be performed in the suhalgebra of poly- 
nomials, i.e. with elements of the form: 

f ( Z )  =f0 + f p Z  p + fo,  Z ~162 + . . .  

where the coefficientsfp... ~ are complex numbers. 
The commutation relations of the algebra d are not specified a priori. 

They are implied by the requirement that d should admit a canonical 
structure. 

In the geometric approach we are investigating in this paper, canonical 
mechanics is formulated in terms of quantities which we call tensors (only 
scalars and vectors are needed as fields), in analogy with the commutative 
case. The components of these tensors are functions of the variables Z =, 
and their transformations are defined by the admissible transformations of 
coordinates in ~ .  The latter are necessarily linear, i.e. 

ZP-->ZP~=C~'Z  ~ , Det(C~') ~ 0 (3.1) 

Scalars and vectors are defined by their usual transformation properties: 

f ' ( Z ' )  = f ( Z ) ,  fP ' (Z ' )  = C~' f'~(Z) (3.2) 

where, for each value o f p , f P ( Z )  ~ sr 

4. Polarizations 

In this section we introduce the basic differential operator of non- 
commutative analysis. In ordinary analysis one considers the partial 
derivatives as the basic differential operators. The other differential opera- 
tors of tensor analysis are then defined in terms of partial derivatives. This 
approach does not work in the non-commutative case. We shall see that 
in this case one must consider the directional derivative, or polarization, 
as the basic operator. The gradient appears as a simple case &polarization, 
while the Lie derivatives must be carefully defined. This will be done in the 
next section. 

In ordinary analysis, the directional derivative of a function f ( z )  in the 
direction of  a given vector field hP(z) is hPfp. In the non-commutative case 
we shall have to retain the structural source of this expression as the 
definition of  the directional derivative. To this purpose, let a contravariant 
vector hP(Z) be given. It generates an infinitesimal motion in d defined 
by the mapping 

f ( Z )  --+ f ( z )  ~ f  f ( Z  + 3~-h) (4.1) 

We shall c a l l f ( Z )  the varied function. For  the variables Z p themselves, the 
mapping (4.1) reads 

Z p --~ ZP(Z) = Z p + 3~-h'(Z) (4.2) 

Unless h~ is a linear function of  the variables Z, the phase space is not 
stable under the mapping (4.2), i.e. 2 p r ~ .  
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In the commutative case, one can interpret the motion defined by relation 
(2.3) as either a motion of phase space into itself, or as a variation of the 
identity function, i.e. of the function I: ZP -+ Z ~. For non-linear motions, 
only the latter interpretation is possible in the non-commutative case. 
Hence, every non-linear motion is necessarily a motion in ~r as illustrated 
in Fig. 1. 

The unit e is a fixed point With respect to all motions, and so are the 
points of the one-dimensional linear subspace Ce ~ d ,  where C is the 
field of complex numbers. There are no other fixed points. 

The directional differential of a function is the difference 

Sf = f (Z + 3Th(Z)) - f (Z) 

Figure t 

between the varied function and the original function. The corresponding 
directional derivative shall be denoted by ~@h. f ,  and defined by the relation: 

~h. fDeJ [ d  f ( z  + rh(Z))]~=o = Sf/~r (4.3) 

The linear operator ~h. is called the polarization operator, and the vector 
h p, the polarization vector. Relation (4.3) defines the result of polarization 
as the coefficient of the linear term in ~- in the polynomial expansion of the 
function f ( Z  + -rh(Z)). 

The process of polarization of a polynomial f consists in successively 
substituting the component h 0 of the polarization vector at every occurrence 
of the symbol Z ~ in f (Z) and summing all terms thus obtained. For 
example: 

~. ( fo ,  ZPZ ~) =fp.,hP(Z)Z" + foTZOh~'(Z) 

In the commutative case, one can write: 

~ h .  = h p 0o (4.4)  

One directly verifies that in the non-commutative case the polarization 
defined by relation (4.3) is a derivation, i.e. it satisfies the identity: 

~h.(fg) = (,f~h. f )  g + f(~n. g) (4.5) 
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while the operator h pap does not. One also verifies the following expression 
for the commutator of two polarizations: 

[~h., ~s . ]  = ~<s., n.> (4.6) 

where the angular bracket is defined by the relation: 

( f o ,  h ')  DeJ ~h" U p - ~s .  hp (4.7) 

The index of the polarization vector shall be called the polarization index. 
Since it is a bound index, in the sense that it is not free in the result of 
polarization, we indicate it by a dot. This convention enables us to express 
easily polarizations with respect to tensors, where the polarization index 
is indicated by a dot, the other indices remaining unaffected. 

We shall need, in this work, only two polarization tensors: The Kronecker 
tensor, 8~, and the symplectic tensor e ~ ,  %& The corresponding polariza- 
tions are called partial derivatives. We denote them by the symbol 90 :  

~ p  Def ~ p  Def 
= ~ ; ,  = ~',, .  (4.8) 

One easily verifies the commutation relation [~0, ~ , ]  = 0. If the symplectic 
tensor is constant, as it is in our case, one also has: 

~P = eP" ~ ,  (4.9) 

and the contravariant operators commute. Otherwise they do not. The 
usual conventionsfp = ~ p f ,  f .P  = ~ P f ,  shall be used. 

5. Lie Derivatives 

In this section we shall derive expressions for Lie derivatives which are 
sufficiently abstract to be meaningful in the  case of non-commuting 
variables, and which agree with the ordinary definitions if the variables 
commute. 

Intuitively, the Lie derivative of a geometric object measures the dif- 
ference between the varied object and the transported object, both concepts 
being properly defined if the polarization vector is given. 

If  T(Z) represents any object, the varied object is defined by the following 
relation: 

T ( Z )  D~_[r T (Z  + 8"rh(Z)) = T (Z )  + 8"r,~a~,. T (Z)  (5.1) 

Variation is a motion in d ,  as illustrated in Fig. 1. 
The transported object is the object itself, appropriately transported to 

the new point. The algorithmic definition of transport depends on the 
nature of the object. 

We shall use the symbol ~c,~ h. for the Lie operator with respect tO a 
polarization vector hP(Z). Hence, we adopt the following definition for 
the Lie derivative of an object T, T being the transported object. 

$~-S~. T D=a T-- T (5.2) 
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It is clear that if an object has a vanishing Lie derivative with respect to 
the polarization vector defining some group of motions, it is invariant 
under the motions of this group. 

In the case of commuting variables, one can obtain the Lie derivatives 
of any type of tensor from the Lie derivatives of three basic types; namely 
the scalars and the two types of vectors, by requiring that the Lie derivative 
of a general tensor be a linear operation, that it commute with contraction 
of indices, and that it be a derivation with respect to the tensor product. 
The extension of the Lie derivatives to non-commuting tensors shall not 
be attempted, since the only Lie derivatives needed in canonical mechanics 
are those of scalars, contravariant vectors and gradients of scalars, the 
components of these objects being functions of the Z's. In addition, we 
shall use the Lie derivatives of constant tensors. They can be taken from 
the classical theory. 

5.1. Scalars 

Let S r denote the set of scalars. Pointwise, ~9 ~ = ~ ' .  For a n y f e  S t', the 
expression for the varied scalar is given by relation (5.1) and the substitution 
T = f  In the commutative case, the value of a scalar at a point of phase 
space is a number, and one transports a number by assigning it to the new 
point. Hence, the transported scalar is defined by the relationf(z + 3rh(z)) 
= f (z). By adopting the same formal definition in the case of non-commuting 
variables, one obtains, from relation (5.2), the expression: 

~LPh. f = ~ .  f (5.1.1) 

While the polarization is defined for any functian, the Lie derivative is 
a structure-preserving operator, i.e. it maps tensors into tensors of the 
same type. Hence, relation (5.1.1) is valid only for scalars. 

5.2. Contravariant Vectors 

The set of contravariant vectors shall be denoted by r For a n y f  p e r 
the varied vector is defined by relation (5.1). We must now find the correct 
definition for the transported vector. 

In the commutative case,fp(z) belongs to the tangent space at the point 
z ~ ~ ~ .  One can obtain the definition of its transport by studying the 
motion induced in the tangent space by a motion of the manifold ~@. This 
idea is inapplicable in the non-commutative case, but it suggests the 
following similar process: Consider the pair of infinitesimally near spaces 
~ ,  93 c ~r linearly spanned, respectively, by the sets of variables Z o and 
2P = ZP + 3afP(Z). Conversely, the pair of spaces ~ ,  9 3, uniquely defines 
the vector fP(Z). An infinitesimal motion defined by the polarization 
vector h(Z) maps this pair of adjacent spaces onto the pair of adjacent 
spaces ~ ' ,  93' c d .  The vector fP(Z') defined by this new pair of spaces 
is the transported vector. The construction is illustrated in Fig. 2. By 
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performing the substitutions indicated in the diagram, one obtains the 
following expression for the Lie derivative: 

c~h. fP  = ~h. f o - ~ r  p (5,2.1) 

If the variables commute, relation (4.4) holds, and this expression 
assumes its usual form : 

~q~h. fP  = h~ f p, , - f ~  h~ (5.2.2) 

Relation (5.2.1) has already appeared in a different role, relation (4.7). 
Comparison of these two equations yields the following relation between 
the symbols corresponding to the two roles of the Lie derivative: 

( f o ,  h') = &~ah. f o  (5.2.3) 

Figure 2 

The angular bracket is the Lie bracket. In commutative analysis it is denoted 
by square brackets, but we reserve this symbol for the algebraic commu- 
tator. The Lie bracket is obviously bilinear and antisymmetric. 

By straightforward substitution of relations (4.6) and (4.7) one verifies 
the validity of the Jacobi identity: 

( ( f P ,  h ' ) ,g ' )  + ((gP, f ' ) ,  h') + ((hP, g ' ) , f  ") = 0 (5.2.4) 

Hence, the linear space 3r of polarization vectors is a Lie algebra with the 
bracket (5.2.3) as Lie product. 

From relations (5.2.3) and (5.2.4) one obtains the following expression 
for the commutator of  Lie derivatives of  contravariant vectors, gP. 

[~LPh., .LPs.]g~ ----- ~q<y. h.>g p (5.2.5) 

5.3. Gradients 

The set of gradients shall be denoted by f~. For any scalar f ( Z )  ~ St', 
we are to find the Lie derivative of the gradient f 0  ~ fg, defined by relation 
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(4.8). The calculation is most transparent if done at the point Z ~ - ~rh~(Z). 
The defining relation for the Lie derivative is then: 

3 - c ~ h . f o ( Z -  3rh) = f , 0 ( Z -  3~-h) - f ,0(Z - 8~-h) (5.3.1) 

Relation (5.1) yields f , o ( Z - S r h ) = f 0 ( Z )  for the varied gradient. The 
transported gradient is naturally defined by the relation f ,p(Z-8~-h)= 
~ o f ( Z  - 8rh). Disregarding the 8~ -2 terms in the expansion of the left-hand 
side of relation (5.3,1), one obtains: 

Sh.  f o(Z) = 0 o ~h. f ( Z )  (5.3.2) 

One easily verifies that the operator ~0 can be distributed over the 
functions f and h ~ according to the derivation rule. One thus obtains the 
expression 

f h. f o  = ~h . ,p f  + ~h. f p  (5.3.3) 

tn the case of commuting variables, for which relation (4.4) holds' 
expression (5.3.3) assumes the standard form 

5~h. f o  = h ' ,o f  ~ + h~ f p ,  (5.3.4) 

According to relation (5.3.2), the Lie derivative of gradients is the 
linear operator 2~~ n. which makes the following diagram commute: 

I I 
I 

De -,fr 

5.4. Central Tensors 

A central object is an object whose components belong to the centre of 
the algebra d .  If either the polarization vector or the object to which the 
Lie derivative is applied is central, the Lie derivative assumes its classical 
expression, since relation (4.4) applies. This fact has already been used in 
the definition of the gradient, which is a polarization with respect to a 
central object, relation (4.8). We list here, for future reference, the expres- 
sions for the Lie derivatives of some central tensors, C. The polarization 
vector is general. 

~-q~h. C ~ = h ~ C~,,o - CP~ h~,p - C~~ h~,p (5.4.1) 

cSh. C~'~ = hP C~'~,p - C~ + CeohP ,  o (5.4.2) 

,Le a. C ~  = h o C~,o + Co~hP ~ + C~oho,~ (5.4.3) 

If the algebra is central, the first terms on the right-hand sides of these 
relations vanish. 



334 EMILE GRGIN AND AAGE PETERSEN 

5.5. General Properties 

Let o~- denote any of the sets of objects considered so far, i.e. 6 a, ~ ' ,  ~ ,  
or the central tensors. Relation (4.3) obviously implies that the polarization 
operator is bilinear, i.e. linear in the object, and linear in the polarization 
vector. Thus, the Lie derivatives can be viewed as bilinear operators: 

._@: J -  | r __> J "  

L.ce: y @ ~//" ~ J - 

Relation (5.2.I) implies that the Lie derivative of contravariant vectors is 
antisyrnmetric: 

oLa: ~f  ^ V ~ ~/f 

It is convenient to introduce the concept of Lie motion in the spaces ~ ' ,  
an infinitesimal Lie motion being defined by the operator 

Lb. DeJ I + 3r~'oh. (5.5.1) 

which maps 3 -  into itself. 
The invariance group of an object T ~ J -  is defined by the Lie subalgebra 

~'~r c ~ of generators satisfying the requirements of  conservation and 
stability: 

Z(': T x ~//~r ~ {0} 

~ :  "~T ^ "~T ~ ~/~T 

Thus, the conserved objects of a group of motions are the fixed points of 
the corresponding group of Lie motions. For  example, if the object T 
represents the metric tensor of the space, the elements of ~//~r are the Killing 
vectors. The corresponding group of  motions is the symmetry group of 
the space. 

6. Canonical Algebras 

The fundamental, or metric tensor of canonical mechanics is the syrn- 
plectic tensor C 7. The elements of the Lie algebra of generators hP e ~//-r, 
for T = e p', are the solutions of the Killing condition 

~c~h. E p~ = 0 (6.1) 

Substitution of eP~ for C p" in relation (5.4.1) yields h;, ~ = h ''p. This relation 
implies that the Killing vectors are gradients: 

h p = h'P (6.2) 

where h(Z) is any point of ,~.  This is, formally, the same solution as in 
classical mechanics, relation (2.5). 

The Lie bracket of gradients shall be denoted by a bracket of scalar 
generators: 

( f , g )  •_e_r (f .p,g,.)  
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We shall call it the canonical product in d .  By relation (5.2.4), it is a Lie 
product. The Lie derivatives with respect to gradients shall be called 
canonical derivatives, and shall be denoted by c~~ h. A canonical derivative 
applied to a scalar is the same as a canonical polarization : 

P h f =  (f ,  h) (6.3) 

Substitution of the central tensor 8~ into relation (5.4.2) yields ~h- 8~ = 0, 
which means that contractions inside mixed tensors commute with the Lie 
derivative if the latter is defined. Applied to C ~  = %r relation (5.4.3) 
also yields the gradients. 

The results obtained so far are independent of the commutation properties 
of the algebra ser The space ~/" of polarization vectors defines in the space 
of objects two continuous groups: The group of motions, the neighborhood 
of whose identity consists of the operators 

Ph" W I + 8~-~n. (6.4) 

and the group of Lie motions, the neighborhood of whose identity consists 
of the operators Lb. defined by relation (5.5.1). If J -  = d ,  these two groups 
coincide. 

The group of motions is also the group of automorphisms of the associ- 
ative algebraic substructure of d ,  i.e. the following mapping diagram 
commutes 

~ | 1 6 2  

This diagram is equivalent to the derivation property, (4.5), of the polariza- 
tion operator. 

Of the three spaces J -  considered in canonical mechanics, 5 ~ i.e. ~ ,  
is the only one equipped with an associative algebraic product. Thus, the 
automorphism diagram shown above is the only such diagram in the theory. 
Moreover, the Lie algebra ~/r of vector generators of motions is independent 
of the structure of the space Y in which it acts. This is not so for the group 
generated by the Killing fields. The generators are now observables them- 
selves, and their Lie structure must be consistent with their associative 
structure. This consistency requirement imposes conditions on the corn= 
mutation properties of the algebra d .  The derivation property must be 
bilateral, i.e. the canonical polarization must be a derivation with respect 
to the product of dynamical variables to which it is applied, as well as to 
the product of generators. This imposes the following commutation rela- 
tions on the variables ZP: 

[ z . ,  z ' l  = K~ ~ (6.5) 
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where K is any central element. If  the algebra is central, K is a complex 
number. In the usual representation of the variables Z ~ by Hermitian 
operators, K = ih. 

In order to prove relation (6.5), one expands the canonical products in 
the identity ( fg ,hk)  =- (hk, fg) according to the derivation rule, first to 
the right, and then to the left. The resulting identity reads: 

( f ,h )  [g,k] =- [f,h] (g ,k )  (6.6) 

This identity can be satisfied only if 

[g, hi = K(g,h)  (6.7) 

and one verifies by further substitutions that K commutes with all elements 
of d .  Substitution of g =  roZP, h =spZP, into relation (6.3) yields 
(g,h) = e~ ros T, which proves relation (6.5). 

Relation (6.5) characterizes all associative algebras which admit a 
canonical structure. For K = 0 the algebra is commutative, and one verifies 
that the canonical product is the Poisson bracket. If  K =  const. 4= 0, 
relation (6.5) is the Heisenberg commutation rule. In this case, relation (6.7) 
expresses the equivalence of canonical Lie products and algebraic com- 
mutators. 

7. The Scalar Product 

In this section we consider the symplectic scalar product of contravariant 
vectors, which is, in classical mechanics, fundamentally related to the states. 

For any two infinitesimal vectors fP(z)d~', g~(z)3~', in classical phase 
space, the scalar product %,f~  is the measure of the infinitesimal 
parallelogram they span. 

In the general case, the algebra of generators of the invariance group of 
the scalar product is the set of functions h(Z) for which the following 
diagram is commutative 

+ 

~p CpT > f~ 

Lh L~ = l'h 

+ �9 

T 

L I~ 

Ep? 

The expansion of this diagram yields the relation 

(~z. h ,)g" - f ' ( ~ o - h  ,) = 0 (7.1) 

which is to be interpreted as an identity in the vectors f o  g ,  and as a 
differential condition on the scalar generator h(Z). 

In the case of classical mechanics, where relation (4.4) holds, one verifies 
that all points h z d satisfy relation (7.1), i.e. the invariance group of the 
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scalar product is the canonical group itself. This is essentially Liouville's 
theorem. 

In the case of quantum mechanics, one verifies that only polynomials at 
most quadratic in the variables Z ~ satisfy relation (7.t). Due to relation 
(6.5), the coefficients of the quadratic terms of these polynomials are sym- 
metric, and thus, the invariance group of the scalar product is the inhomo- 
geneous symplectic group. The scalar product thus intrinsically distinguishes 
the symplectic subgroup of the canonical group in the case of quantum 
mechanics. 
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